
Lucas Lima Vaz Jannuzzi

Study of the Point Matching Method for
Modeling Tunnels with Deformed Arbitrary

Cross Section, and Truncated by Impedance
Boundary Condition

Dissertação de Mestrado

Thesis presented to the Programa de Pós–graduação em
Engenharia de Elétrica, do Departamento de Engenharia Elétrica
da PUC-Rio in partial fulfillment of the requirements for the
degree of Mestre em Engenharia de Elétrica.

Advisor : Prof. José Ricardo Bergmann
Co-advisor: Prof. Guilherme Simon da Rosa

Rio de Janeiro
February 2025



Lucas Lima Vaz Jannuzzi

Study of the Point Matching Method for
Modeling Tunnels with Deformed Arbitrary

Cross Section, and Truncated by Impedance
Boundary Condition

Thesis presented to the Programa de Pós–graduação em
Engenharia de Elétrica da PUC-Rio in partial fulfillment of
the requirements for the degree of Mestre em Engenharia de
Elétrica. Approved by the Examination Committee:

Prof. José Ricardo Bergmann
Advisor

Departamento de Engenharia Elétrica – PUC-Rio

Prof. Guilherme Simon da Rosa
Dep. de Eng. Eletrônica e de Telecomunicações – UNESP

Prof. Rafael Abrantes Penchel
Dep. de Eng. Eletrônica e de Telecomunicações – UNESP

Prof. Raul Oliveira Ribeiro
Dep. de Eng. Eletrônica e de Telecomunicações – UNESP

Rio de Janeiro, February the 26th, 2025



All rights reserved.

Lucas Lima Vaz Jannuzzi

Received the B.S. degree in electrical engineering from the
Pontifical Catholic University of Rio de Janeiro, Rio de
Janeiro, Brazil, in 2023

Bibliographic data
Jannuzzi, Lucas Lima Vaz

Study of the Point Matching Method for Modeling
Tunnels with Deformed Arbitrary Cross Section, and
Truncated by Impedance Boundary Condition / Lucas Lima
Vaz Jannuzzi; advisor: José Ricardo Bergmann; co-advisor:
Guilherme Simon da Rosa. – 2025.

52 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Elétrica,
2025.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Método de Point
Matching. 3. Condição de contorno de impedância. 4. Alta
impedância. 5. Campos eletromagnéticoss. I. Bergmann,
José Ricardo. II. Rosa, Guilherme Simon da. III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Engenharia Elétrica. IV. Título.

CDD: 620.11



To my parents, for all the support and affection.



Acknowledgments

Firstly, I would like to thank God for all the strength and opportunities
I have had so far along my journey.

I would like to express my sincere gratitude to everyone in the PUC-
Rio community who contributed to the development and completion of this
master’s thesis, especially my advisor José Ricardo Bergmann for all the
support, help, and suggestions.

My immense gratitude to my co-advisor Guilherme Simon da Rosa for
the motivation, guidance, and support throughout the research.

I also thank the members of the examination committee for their time
and dedication in evaluating this work.

I am grateful to my family and friends for all the encouragement and
support, especially to my parents Deise Lima Vaz Jannuzzi and Márcio
Francisco Jannuzzi, and to my brother Pedro Lima Vaz Jannuzzi.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This study was financed in part by the Fundação Carlos Chagas Filho
de Amparo à Pesquisa do Estado do Rio de Janeiro, under the Mestrado Nota
10 program.



Abstract

Jannuzzi, Lucas Lima Vaz; Bergmann, José Ricardo (Advisor);
Rosa, Guilherme Simon da (Co-Advisor). Study of the Point
Matching Method for Modeling Tunnels with Deformed
Arbitrary Cross Section, and Truncated by Impedance
Boundary Condition. Rio de Janeiro, 2025. 52p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

This work presents a theoretical analysis of a hollow waveguide with an
arbitrarily shaped cross section, with straight longitudinal axis, and truncated
by impedance boundary condition. Additionally, mathematical models for the
electromagnetic characterization of guided millimeter waves are developed to
apply the point matching method to solve the boundary value problem. In
this context, a first-order Leontovich boundary condition is initially studied to
determine the electromagnetic fields in a tunnel. To enhance the accuracy of
the approximate solution of the Leontovich boundary condition, the use of the
first-order Rytov boundary condition is proposed, considering the system’s
geometry (contour curvature). An algorithm involving the point matching
technique was implemented in Matlab platform for the electromagnetic
analysis inside the waveguide considering a constant surface impedance. The
results of field propagation for different modes and conductivities are presented,
discussed, and compared with finite element reference solutions.

Keywords
Point Matching Method; Impedance boundary condition; High

impedance; Electromagnetic fields.



Resumo

Jannuzzi, Lucas Lima Vaz; Bergmann, José Ricardo; Rosa,
Guilherme Simon da. Estudo do Método de Point Matching
para Modelamento de Túneis com Seção Transversal
Arbitrária Deformada e Truncada por Condição de
Contorno de Impedância. Rio de Janeiro, 2025. 52p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Este trabalho apresenta uma análise teórica do guia de onda oco com
seção transversal de geometria arbitrária, eixo longitudinal reto e truncado
por uma condição de contorno de impedância. Adicionalmente, modelos
matemáticos para a caracterização eletromagnética de ondas milimétricas
guiadas são desenvolvidos para a aplicação do método de point matching na
resolução do problema de valor de contorno. Nesse sentido, é abordado um
estudo da condição de contorno de Leontovich de 1º ordem para determinação
dos campos eletromagnéticos em um túnel. Com o objetivo de tornar a solução
aproximada para a condição de contorno de Leontovich mais precisa, é proposto
o emprego da condição de contorno de Rytov de 1° ordem, levando em
consideração a geometria do sistema (curvatura do contorno). Um algoritmo
envolvendo a técnica de point matching foi implementado na plataforma
Matlab para a análise eletromagnética dentro do guia considerando impedância
de superfície constante. Os resultados dessa propagação dos campos para
diferentes modos e condutividades são apresentados, discutidos e comparados
com soluções de referência via elementos finitos.

Palavras-chave
Método de Point Matching; Condição de contorno de impedância; Alta

impedância; Campos eletromagnéticos.
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1
Introduction

1.1
General Introduction

The millimeter-wave band, covering frequencies between 30 GHz and
300 GHz, is the subject of numerous studies due to being a very challenging
and interesting topic in the field of 5G, 6G, and future technologies. The
analysis of electromagnetic wave propagation in waveguides with arbitrary
cross sections has been studied in the literature for various applications such
as tunnels, drillings, and wells. This analysis, within this frequency range,
inside a tunnel with a cross-sectional area with discontinuities, or in other
words, deformed geometry, can be conducted through approximate analytical
techniques described by the authors in [1] and [2], or alternatively, based on
an approximate solution using the semi-analytical method of point matching,
considering that the tunnel is modeled as a waveguide truncated by a realistic
impedance boundary condition with a straight longitudinal axis [3].

The history of impedance boundary conditions (IBCs) is discussed,
at least partially, by Pelosi and Ufimtsev. While it is unclear who first
introduced them, it is evident that both Shchukin and Leontovich deserve
credit for what we will refer to as the zeroth-order impedance boundary
conditions (in the case of Rytov’s analysis, which is equivalent to the first order
Leontovich boundary condition) [4]. The investigation of the electromagnetic
characterization of high-frequency waves within tunnels of complex shapes
is relevant due to the various applications in wireless communications, such
as intelligent transportation systems and underground sensor networks. A
simplified model for wave propagation in tunnels with absorbing walls can be
obtained using constant impedance boundary conditions, as in [5], considering
the circular shape. This example provides a good alternative for tunnels with
highly absorbing concrete or rock walls, as it takes into account the formulation
of only one layer. However, it is not very accurate due to the approximations
of the surface impedance model.

When the tunnel has two layers (a two-layer coaxial guide), the model be-
comes more accurate by determining a discrete set of guided modes supported
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in circular waveguides with losses. The author in [6] compares results from the
exact solution of the two-layer tunnel problem with the approximate solution
of a single-layer tunnel, via truncation by a first-order Leontovich impedance
boundary condition. In [7], the author investigates the radio propagation
characteristics in tunnels modeled as a two-layer circular waveguide with walls
composed of soil.

In [8], an approach for incorporating surface roughness into models
based on the vector parabolic equation method is studied, and thus, this
perspective is applied to realistic tunnel geometries with arbitrary cross-
sections and curvature variations. In simple scattering problems, where plane
waves are incident on geometries with classic cross-sections such as circles
and ellipses, closed-form solutions are shown in [9] and [10]. In this context,
the mode matching technique (MMT) is widely used in the literature since,
in simple geometries, the wave functions are known and boundary conditions
are applied globally imposing field continuity on junction surfaces between
different regions. Thus, in [11], the author applied the MMT to coupling
structures, analyzing the influence of non-homogeneous dielectric loading on
radiating structures. Additionally, this technique was used in lossy guided
structures.

Scattering from other complex shapes (electromagnetic analysis in
waveguides with non-canonical cross-sections) requires the use of brute-force
methods such as the method of moments (MoM) [12], and the finite element
method (FEM) [13, 14]. These techniques are widely used due to their
relatively simple computational implementation, becoming popular, especially
with their inclusion in several commercial 3D electromagnetic analysis and
simulation software. Additionally, semi-analytical methods like point matching
(PMM) [3,15,16], based on a series expansion in terms of special functions, can
be used to satisfy boundary conditions in cylinders with cross-sections close to
circular or elliptical shapes, where boundary conditions are imposed at discrete
points along the contour, allowing to obtain an approximate solution to the
two-dimensional Helmholtz equation with reduced computational requirements
compared with brute force counterparts.

The thesis aims to develop new rigorous mathematical models for the
characterization of a straight tunnel with arbitrary shape, and truncated by a
Z impedance boundary condition, that is, to develop a solution that depends
only geometry and environment information (tunnel walls). The mathematical
formulation of the PMM to solve waveguides with arbitrary contours takes
into account the effect of surface impedance which is constant for the scenario
using the Leontovich boundary condition.
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1.2
Dissertation Organization

The rest of this thesis is organized as described below. Chapter 2 briefly
shows the theory of cylindrical wave functions to be used in problems whose
boundaries coincide with surfaces defined by cylindrical coordinates.

In Chapter 3, we address a theoretical analysis of the waveguide with an
arbitrary cross section shape, with a straight longitudinal axis, and truncated
by an impedance boundary condition. Furthermore, using the boundary
condition equation on a surface with high conductivity (1st order boundary
condition or Leontovich boundary condition), expressions for the modal fields
inside the guide are developed. The solution to the problem can be improved
by using the 2nd order Rytov boundary condition, which is more accurate
than the approximation of the solution for a truncated one-layer tunnel using
the 1st order impedance boundary condition. However, as an additional future
study, a simpler approximate simplification will be suggested: the 1st order
solution of Rytov’s Generalized Analysis, which takes into account the effect
of curvature, different from the Leontovich boundary condition.

In Chapter 4, the point matching method will be used to solve the associ-
ated boundary value problem, and a numerical algorithm will be implemented
in Matlab according to the formulation for Leontovich’s 1st order impedance
boundary condition.

Chapter 5 deals with the numerical results obtained for different cross-
sectional geometries and different conductivities. Case studies of engineering
applications such as microwave propagation in tunnels with arbitrary cross
sections operating at a frequency of 1 GHz will be evaluated. The results
obtained from the Leontovich boundary condition will be analyzed and
compared with the finite element method (method used in the CST software
simulation) and the perturbation method.

Appendix A presents a theoretical review of the 1st order Rytov boundary
condition. The difference from the Leontovich boundary condition is that the
field and surface impedance equations depend on a higher-order term and
consider the effect of curvature.

In Chapter 6, the topics covered in this thesis are summarized, the
conclusions of this work and suggestions for future research work are described.



2
Theoretical Review of Cylindrical Wave Functions

Homogeneous cylindrical devices can support various field configurations,
including TE, TM, and hybrid modes. Problems with boundaries that coincide
with cylindrical coordinate surfaces are typically solved in cylindrical coordi-
nates. First, we consider solutions to the scalar Helmholtz equation. Once these
scalar wave functions are obtained, we can construct electromagnetic fields.

The scalar Helmholtz equation is written as

∇2ψ + k2ψ = 0. (2-1)

Expressing the Laplacian in cylindrical coordinates, we have

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1
ρ2
∂2ψ

∂ϕ2 + ∂2ψ

∂z2 + k2ψ = 0. (2-2)

It is assumed that the solution ψ is separable into a product of functions
that are dependent on a single coordinate. Thus, based on the variable
separation method, we seek to find solutions in the form

ψ = R(ρ)Φ(ϕ)Z(z). (2-3)

Dividing the above by ψ and substituting (2-3) into (2-2), it is possible to write

1
ρR

d

dρ

(
ρ
dR

dρ

)
+ 1
ρ2Φ

d2Φ
dϕ2 + 1

Z

d2Z

dz2 + k2 = 0. (2-4)

where the third term is independet of ρ and ϕ. Furthermore, the equation must
be null for all values of ρ, ϕ and z, so this term must also be independent of
z. Therefore, we can define a constant kz as

1
Z

d2Z

dz2 = −k2
z . (2-5)

Making the above substitution in (2-4) and taking the produt with ρ2, we
obtain ρ

R

d

dρ

(
ρ
dR

dρ

)
+ 1

Φ
d2Φ
dϕ2 + (k2 − k2

z)ρ2 = 0. (2-6)
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Now we have the second term of (2-6) as a function that is independent
of ρ and z. All other terms are independent from ϕ. Again, since the equation
must be null for all values of ρ, ϕ and z, we can do

1
Φ
d2Φ
dϕ2 = −n2, (2-7)

where n is a constant. The preceding equation then becomes an equation that
depends only on ρ, that is,

ρ

R

d

dρ

(
ρ
dR

dρ

)
− n2 + (k2 − k2

z)ρ2 = 0. (2-8)

The wave equation is now separated. We can define kρ as

k2
ρ = k2 − k2

z . (2-9)

and write the separated equations [Eqs. (2-5), (2-7), and (2-8)] as

ρ
d

dρ

(
ρ
dR

dρ

)
+ [(kρρ)2 − n2]R = 0, (2-10)

d2Φ
dϕ2 + n2Φ = 0, (2-11)

d2Z

dz2 + k2
zZ = 0. (2-12)

Equation (2-10) is a Bessel differential equation of order n, with the
general solution given by the linear combination of Bessel and Hankel functions
of first kind, i.e., Jn(kρρ) and Hn(kρρ), respectively. Based on the problem
analyzed, the solution can be obtained using one of these functions or a linear
combination of them. In this work, considering all the characteristics of the
problem, we chose to use a solution given by Jn(kρρ), since the origin ρ = 0 is
within the domain of interest.

Equations (2-11) and (2-12) present harmonic functions as a solution,
where the general solution was selected according to the problem studied. We
will consider the elementary wave function in the form

ψkρ,n,kz = Jn(kρρ)ejnϕe−jkzz. (2-13)

and the final solution to the Helmholtz equation is given by a linear combina-
tion of all elementary wave functions that serve as a solution to the problem.
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We can add all possible values of n and kρ (or kz) taking into account the
constants associated with a particular solution {n, kρ} — An,kρ —, that is:

ψkρ,n,kz =
∑

n

∑
kρ

An,kρJn(kρρ)ejnϕe−jkzz. (2-14)

Given that the solution ψ is known, we can calculate the value of the
field components according to [15]. Therefore, the TM z fields are given by

Eρ = 1
ỹ

∂2ψ

∂ρ∂z
Hρ = 1

ρ

∂ψ

∂ϕ

Eϕ = 1
ỹρ

∂2ψ

∂ϕ∂z
Hϕ = −∂ψ

∂ρ

Ez = 1
ỹ

(
∂2

∂z2 + k2
)
ψ Hz = 0

(2-15)

and the TEz fields are expressed as

Eρ = −1
ρ

∂ψ

∂ϕ
Hρ = 1

z̃

∂2ψ

∂ρ∂z

Eϕ = ∂ψ

∂ρ
Hϕ = 1

z̃ρ

∂2ψ

∂ϕ∂z

Ez = 0 Hz = 1
z̃

(
∂2

∂z2 + k2
)
ψ

(2-16)



3
Approximate Boundary Conditions in Electromagnetism: The-
ory and Formulation

One of the most common boundary condition is the impedance boundary
condition, which relates the tangential components of the electric and magnetic
fields through a surface. The surface impedance boundary condition was
first used in electromagnetic scattering by numerous russian authors in the
early 1940s and is generally attributed to Leontovich, commonly referred to
as the Leontovich boundary condition or first-order boundary condition. In
1939, Rytov made the first systematic attempt to address surface impedance
boundary conditions. His perspective on the perturbation method allowed
the calculation of fields inside and outside conductors based on power series
expansions and included the Leontovich condition as the first-order term in the
expansion. The inclusion of higher-order terms enables the treatment of curved
boundaries as well as variations in the field on the surface of the conductors.
The method is not as well-known as others, mainly because Rytov’s work
was published in russian. The work developed by Leontovich and the surface
impedance boundary condition named after him are much more well-known
and have wide acceptance to this day [17,18].

Firstly, before presenting the expressions related to the boundary condi-
tions, it is worth providing a brief explanation of the Leontovich boundary
condition and the Generalized Rytov Analysis. Although they are similar
concepts, there are different aspects in the approach of wave propagation
problems and the context used.

The Leontovich boundary condition, which describes the relationship
between the electric and magnetic fields on a highly conductive surface, is
a specific form of boundary condition used in the analysis of electromagnetic
problems that consider interfaces between dielectric media and highly con-
ductive surfaces. Moreover, this boundary condition is based on a first-order
approach [18].

On the other hand, the Rytov boundary condition, which is part of the
Generalized Rytov Analysis, is a broader approach that models the propagation
of electromagnetic waves in random media. In summary, while the Leontovich
boundary condition focuses on the properties of interfaces between dielectrics
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Figure 3.1: Hollow waveguide with arbitrary cross-section and truncated by
impedance boundary condition Z.

and conductors, the Rytov boundary condition addresses wave propagation in
random media, taking into account the statistical fluctuations of the medium,
that is, it considers the contour curvature and impedance variation [19].
Therefore, the Rytov boundary condition deals with an anisotropic impedance,
a boundary impedance that varies according to the direction of the field at
the surface, that is, the value of the impedance depends on the orientation
of the electric or magnetic field in relation to the preferred directions of the
material or surface. This is especially important in waveguides with arbitrary
cross-sections, where boundary conditions can vary in complex ways across the
surface.

In this chapter, we will present the problem and framework used for
developing the impedance boundary condition formulation on a high-order
impedance surface.

3.1
First-Order Leontovich Boundary Condition

Consider the waveguide represented in Fig. 3.1 , where region 1 is the
internal (uniform) part and region 2 is the external (conductive) part of the
waveguide. The arbitrarily shaped contour C limits these regions. Defining the
unit normal vector to the surface n̂ = ρ̂ nρ + ϕ̂ nϕ pointing into the waveguide,
and considering Z = (µ/ϵ)1/2 as the impedance of the surrounding conductive
medium (with µ = µ0 and ϵ = ϵ0ϵr −j σ/ω), we wish to impose the Leontovich
impedance boundary condition [19]

n̂× Ē = Z n̂×
(
n̂× H̄

)
(3-1)

on C.
Replacing the normal vector n̂ in (3-1) and using the electromagnetic
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fields with cylindrical components Ē = [Eρ, Eϕ, Ez]T e H̄ = [Hρ, Hϕ, Hz]T , we
have that:

(
ρ̂ nρ + ϕ̂ nϕ

)
× Ē

= Z
(
ρ̂ nρ + ϕ̂ nϕ

)
×
((
ρ̂ nρ + ϕ̂ nϕ

)
× H̄

)
(3-2)

(
ρ̂ nρ + ϕ̂ nϕ

)
×
(
ρ̂ Eρ + ϕ̂ Eϕ + ẑ Ez

)
= Z

(
ρ̂ nρ + ϕ̂ nϕ

)
×((

ρ̂ nρ + ϕ̂ nϕ

)
×
(
ρ̂ Hρ + ϕ̂ Hϕ + ẑ Hz

))
(3-3)

Solving the vector products in (3-3), we obtain the following:

ẑ nρ Eϕ − ϕ̂ nρ Ez − ẑ nϕ Eρ + ρ̂ nϕ Ez

= Z
(
ρ̂ nρ + ϕ̂ nϕ

)
×(

ẑ nρ Hϕ − ϕ̂ nρ Hz − ẑ nϕ Hρ + ρ̂ nϕ Hz

)
(3-4)

ẑ (nρ Eϕ − nϕ Eρ) − ϕ̂ nρ Ez + ρ̂ nϕ Ez

= Z
(
ρ̂ nρ + ϕ̂ nϕ

)
×[

ẑ (nρ Hϕ − nϕ Hρ) − ϕ̂ nρ Hz + ρ̂ nϕ Hz

]
(3-5)

ẑ (nρ Eϕ − nϕ Eρ) − ϕ̂ nρ Ez + ρ̂ nϕ Ez

= Z
[
−ϕ̂ nρ (nρ Hϕ − nϕ Hρ) − ẑ n2

ρ Hz

]
+ Z

[
ρ̂ nϕ (nρ Hϕ − nϕ Hρ) − ẑ n2

ϕ Hz

]
(3-6)

ẑ (nρ Eϕ − nϕ Eρ) − ϕ̂ nρ Ez + ρ̂ nϕ Ez

= Z
[
ρ̂ nϕ (nρ Hϕ − nϕ Hρ) − ϕ̂ nρ (nρ Hϕ − nϕ Hρ)

]

− Z

ẑ (
n2

ρ + n2
ϕ

)
︸ ︷︷ ︸

=1

Hz

 . (3-7)

Separating the components, in terms of ρ̂, ϕ̂ and ẑ, we obtain, respectively

Ez = Z (nρ Hϕ − nϕ Hρ) , (3-8)

Ez = Z (nρ Hϕ − nϕ Hρ) , (3-9)
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Z Hz = −nρ Eϕ + nϕ Eρ. (3-10)

Note that the equations (3-8) and (3-9) are identical, and therefore we have
only two linearly independent equations.



4
Point Matching Method (PMM)

The point-matching method is an effective approximate approach for
solving problems in uniform waveguides and has been successfully applied
in the analysis of various unconventional waveguide types. In this method,
electromagnetic fields are evaluated at discrete points along the boundary
surface. Boundary conditions are directly enforced at these points, resulting in
a system of algebraic equations that relate the unknown field coefficients. It is
a more straightforward and, in many cases, computationally simpler approach.
The main advantage of PMM is that it does not require time-consuming and
memory-intensive auxiliary calculations, which are typically necessary in other
techniques such as MMT [22].

Although the point-matching method offers an efficient approach for
solving boundary-value problems in waveguides with arbitrary cross-sectional
geometries, it has certain limitations. One such restriction is that the cross
section contour of the waveguide must be closed, as the wave function solutions
represent closed contours that provide good approximations for the waveguide
geometry. Furthermore, the function that describes the closed curve must be
univocal in the radial direction ρ, meaning that for each fixed ϕ, there must
be a single value of ρ on the same contour [23].

In this chapter, to study wave propagation in an air-filled waveguide, the
point matching method is formulated according to the cylindrical wave func-
tions described in the Chapter 2 and approached considering the Leontovich
boundary condition.

4.1
PMM Using 1st Order Leontovich Boundary Condition

Using the point matching method, we can obtain a solution for Maxwell’s
equations with complex boundary conditions, by expanding the solutions of
the electromagnetic field as a series of cylindrical harmonics [3]. However,
if the waveguide surface does not coincide with the cylindrical coordinate
surface, it is not possible to satisfy the boundary conditions exactly, and
the expansions must be limited by a finite number of terms. Therefore, the
boundary conditions are imposed at a finite set of points along the boundary
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C between the domains of regions 1 and 2 as shown in Fig. 3.1.
Assuming and omitting the harmonic-temporal factor exp(+jωt), in

cylindrical coordinates, the longitudinal fields can be written as [15]

Ez(ρ, ϕ) =
N∑

−N

aenJn(kρρ)ejnϕ (4-1)

=
N∑

−N

ez(ρ, ϕ)aen = ēT
z (ρ, ϕ) āen, (4-2)

Hz(ρ, ϕ) =
N∑

−N

ahnJn(kρρ)ejnϕ (4-3)

=
N∑

−N

hz(ρ, ϕ)ahn = h̄T
z (ρ, ϕ) āhn, (4-4)

where Jn is the first kind Bessel function with integer order n. The expansions
for Ez and Hz each have 2N + 1 harmonics, and therefore we have 2(2N + 1)
unknowns to solve. To solve them, we must consider at least one set with
2P = 2(2N + 1) points along the perimeter of the waveguide. It is important
to note that the propagation factor e−jkzz was omitted when using only ez and
hz as a function of ρ and ϕ.

Something similar to what was done above can be done to write the other
field components — Eρ, Eϕ, Hρ, and Hϕ —, so that everything can be written
in terms of the amplitude vectors aen and ahn. Defining

ā =
āe

āh

 , (4-5)

we can establish the compact notation

Eα =
[
ēT

αe (ρ, ϕ) ēT
αh (ρ, ϕ)

]
ā, α = {ρ, ϕ} . (4-6)

Based on (3-9), (3-10), (4-2), and (4-4), we can convert the boundary
conditions to matrix form, such that Ez

ZHz

 =
ēT

z 0̄T

0̄T Zh̄T
z

 ā =
Z∆̄T

TM,Hs
Z∆̄T

TE,Hs

∆̄T
TM,Es

∆̄T
TE,Es

 ā. (4-7)

Above, the first matrix will be denoted as ¯̄Mz1, and the second as ¯̄Mz2. The
Delta vectors will be defined in sequence, in (4-16)-(4-19). Thus, we can rewrite
(4-7) as [ ¯̄Mz1(ρ, ϕ) − ¯̄Mz2(ρ, ϕ)

]
ā = 0̄. (4-8)
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Introducing ¯̄M(ρ, ϕ) = ¯̄Mz1(ρ, ϕ) − ¯̄Mz2(ρ, ϕ), the boundary conditions on C

can be written as ¯̄M(ρ, ϕ)ā = 0̄. (4-9)
In view of the point matching method, at a point p, at position (ρp, ϕp)

on the contour C, we must impose

¯̄M(ρp, ϕp)ā = 0̄ ⇒ ¯̄Mp ā = 0̄. (4-10)

For p = 1, 2, 3, . . . , P , we can impose the boundary conditions on all points
by stacking all associated matrices ¯̄Mp into one generalized matrix ˜̄̄

M , and
establishing the nonlinear system of equations

˜̄̄
Mā = 0̄. (4-11)

The eigenvalues kρ that solve the above problem are obtained by tracking the
zeros of the characteristic equation det( ˜̄̄

M) = 0. For each eigenvalue found,
the resolution of the null space of ˜̄̄

M will give an eigenvector ā, which allows
recovering the modal amplitudes aen and ahn of the longitudinal fields in (4-1)
and (4-3).

To fill in ¯̄Mz2, we first multiply equation (2-15) by ỹ k−2
ρ , and equation

(2-16) by z̃ k−2
ρ . With this normalization, we have the wave potentials ψTM =

ēT
z āe for the TMz mode , and ψTE = h̄T

z āh for the TEz mode. The impeditivity
and admittivity were denoted here as z̃ = jωµ and ỹ = jωϵ, respectively, where
µ is the magnetic permeability and ϵ is the electric permittivity. Thus, we can
write the field components transversal to ẑ as TMz and TEz contributions, as
shown below.

Eρ =
(

1
k2

ρ

)(
∂2

∂ρ ∂z

)
ēT

z āe︸ ︷︷ ︸
TMz

+
(
z̃

k2
ρ

)(
−1
ρ

∂

∂ϕ

)
h̄T

z āh︸ ︷︷ ︸
TEz

(4-12)

Eϕ =
(

1
k2

ρ

)(
1
ρ

∂2

∂ϕ ∂z

)
ēT

z āe︸ ︷︷ ︸
TMz

+
(
z̃

k2
ρ

)(
∂

∂ρ

)
h̄T

z āh︸ ︷︷ ︸
TEz

(4-13)

Hρ =
(
ỹ

k2
ρ

)(
1
ρ

∂

∂ϕ

)
ēT

z āe︸ ︷︷ ︸
TMz

+
(

1
k2

ρ

)(
∂2

∂ρ ∂z

)
h̄T

z āh︸ ︷︷ ︸
TEz

(4-14)

Hϕ =
(
ỹ

k2
ρ

)(
− ∂

∂ρ

)
ēT

z āe︸ ︷︷ ︸
TMz

+
(

1
k2

ρ

)(
1
ρ

∂2

∂ϕ ∂z

)
h̄T

z āh︸ ︷︷ ︸
TEz

(4-15)

Taking into account the fields defined in (4-12)-(4-15) and the boundary
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conditions in (3-9) and (3-10), we have that the components of the matrix
¯̄Mz2 can be written as follows:

∆̄T
TM,Hs

=

nρ

(
ỹ

k2
ρ

)(
−∂ēT

z

∂ρ

)
︸ ︷︷ ︸

Hϕ

− nϕ

(
ỹ

k2
ρ

)(
1
ρ

∂ēT
z

∂ϕ

)
︸ ︷︷ ︸

Hρ

 (4-16)

∆̄T
TE,Hs

=

nρ

(
1
k2

ρ

)(
1
ρ

∂2h̄T
z

∂ϕ ∂z

)
︸ ︷︷ ︸

Hϕ

− nϕ

(
1
k2

ρ

)(
∂2h̄T

z

∂ρ ∂z

)
︸ ︷︷ ︸

Hρ

 (4-17)

∆̄T
TM,Es

=

−nρ

(
1
k2

ρ

)(
1
ρ

∂2ēT
z

∂ϕ ∂z

)
︸ ︷︷ ︸

Eϕ

+nϕ

(
1
k2

ρ

)(
∂2ēT

z

∂ρ ∂z

)
︸ ︷︷ ︸

Eρ

 (4-18)

∆̄T
TE,Es

=

− nρ

(
z̃

k2
ρ

)(
∂h̄T

z

∂ρ

)
︸ ︷︷ ︸

Eϕ

+ nϕ

(
z̃

k2
ρ

)(
−1
ρ

∂h̄T
z

∂ϕ

)
︸ ︷︷ ︸

Eρ

 (4-19)

The derivatives in terms of ρ, ϕ, and z above can be easily solved using
∂[Jn(kρρ)]/∂ρ → kρJ

′
n(kρρ), ∂/∂ϕ → jn, and ∂/∂z → −jkz. Thus, we have

∆̄T M,Hs|n = − nρ

(
ỹ

k2
ρ

)(
kρ J

′
n(kρρ) ejnϕ

)
−

nϕ

(
ỹ

k2
ρ

)(
1
ρ

)(
j n Jn(kρρ) ejnϕ

)
, (4-20)

∆̄T E,Hs|n = nρ

(
1
k2

ρ

)(
1
ρ

)(
n kz Jn(kρρ) ejnϕ

)
−

nϕ

(
1
k2

ρ

)(
−j kz kρ J

′
n(kρρ) ejnϕ

)
, (4-21)

∆̄T M,Es|n = − nρ

(
1
k2

ρ

)(
1
ρ

)(
n kz Jn(kρρ) ejnϕ

)
+

nϕ

(
1
k2

ρ

)(
−j kz kρ J

′
n(kρρ) ejnϕ

)
, (4-22)
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∆̄T E,Es|n = − nρ

(
z̃

k2
ρ

)(
kρ J

′
n(kρρ) ejnϕ

)
−

nϕ

(
z̃

k2
ρ

)(
1
ρ

)(
j n Jn(kρρ) ejnϕ

)
. (4-23)



5
Numerical Results

The mathematical formulation presented in previous chapters was imple-
mented in an algorithm on the Matlab platform [24] in order to validate it and
analyze the results obtained.

5.1
Results Using the Leontovich Boundary Condition

The results relating to the formulation based on Leontovich’s 1st order
boundary condition are shown below. Convergence was observed using N = 8
in all the scenarios investigated here.

5.1.1
Truncated Circular Waveguide with Imperfect Walls

We consider a circular waveguide with radius a = 1 m and N = 8
harmonics (with points equally spaced along the perimeter of the waveguide)
in order to observe the electromagnetic propagation and identify the corre-
sponding mode. The frequency used was 1 GHz.

5.1.1.1
Circular Waveguide with σ2 = 107 S/m for the 1st Propagating Mode
(Fundamental Mode)

In this scenario, a circular waveguide model with a mode index equal
to 1 was used. When running the program for this example, the results were
Ezmax = 0.1401 and Hzmax = 0.80945. Since there is a small portion of the
electric field Ez associated with the amplitudes aen, the mode becomes hybrid
(a feature that can be captured in the perturbation approximations of [15]),
meaning it is not a pure TEz mode. Therefore, this is almost the TEz

11 mode
(Ezmax < η Hzmax with η = 120π), as evidenced by the longitudinal magnetic
field shown in Fig. 5.1.

Another way to prove this mode is through the value of kρ found,
considering that kρ = x′

np/a and the radius a of the circular guide was fixed
as 1 m. The value of kρ was 1.8409 + j 2.5604 × 10−4 m−1, practically equal to
the value of x′

np = x′
11 in Table 5-3 of [15].
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Figure 5.1: Normalized magnetic field Hz of mode 1 with σ = 107 S/m.

Figure 5.2: Normalized electric field Ez of mode 1 with σ = 107 S/m.

In Fig. 5.2 it is possible to observe the Ez field, orthogonal to the Hz field,
as expected. There is another complementary field that shares the eigenvalue
with this field, but is rotated by 90° with respect to that shown in Fig. 5.1.

Furthermore, to confirm the above, it is possible to analyze the electrical
and magnetic modal amplitudes in Fig. 5.3. From them, it is observed that
ae < η ah, once again confirming that this is almost the TEz

11 mode.
To validate our solution via the point matching method, we evaluated

the effect of truncation of a good metal in region 2 by varying the electrical
conductivity σ2 = {103, 104, 105, 106, 107} S/m. For reference, we compared
our response to the solution via the contour-deformation perturbation method
in [15], where the propagation constant for modes TM z and TEz is approxi-
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Figure 5.3: Modal amplitudes of mode 1 for the case σ2 = 107 S/m.

mated by

jkz ≈ αc + j(β + βc). (5-1)

For TMz modes, we have

αc = ℜe(Z)
η a

√
1 − (fc/f)2

, (5-2)

β = [k2 − (xnp/a)2]1/2, (5-3)

βc ≈ αc. (5-4)

For the TEz modes, we have

αc = ℜe(Z)
η a

√
1 − (fc/f)2

 n2

(x′
np)2 − n2 +

(
fc

f

)2
 , (5-5)

β = [k2 − (x′
np/a)2]1/2, (5-6)

βc ≈ αc. (5-7)

Above, xnp and x′
np represent the p-th zeros of the Bessel function of order n and

its derivative, respectively. Fig. 5.4 shows the longitudinal wavenumber of the
first mode computed via the point matching solution and via the perturbation
solution.
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Figure 5.4: Longitudinal wavenumber of mode 1.

It is worth highlighting that unlike the perturbation solution, the modes
computed by the technique explored here do not represent pure TM z and
TEz fields. This is evidenced by the fundamental mode fields, whose modal
amplitudes were shown in Fig. 5.3.

Finally, we compare our result with the reference solution obtained by
the finite element method (FEM) of the CST software [25]. Fig. 5.5 shows the
fields Ez and Hz via finite element solution in the CST. The presence of the
axial electric field is associated with numerical errors in the FEM.

It is observed that the value of the longitudinal wave number kz

(20.8774 −j 2.25783×10−5 m−1) was equal to that found by the point matching
algorithm (kz = 20.877 − j 2.2577 × 10−5 m−1).

5.1.1.2
Circular Waveguide with σ2 = 107 S/m for the 2nd Propagating Mode

For the second mode, the maximum field amplitudes found in the
algorithm were: Ezmax = 0.99995 and Hzmax = 4.277 × 10−8. Since there is
a small contribution from the magnetic field, this is not the pure TM z mode.
Therefore, this is almost the TM z

01 mode (Ezmax > η Hzmax with η = 120π), as
observed in the longitudinal electric field in Fig. 5.6.

Another way to prove this mode is through the value of kρ found,
considering that kρ = xnp/a and the radius a of the circular guide was fixed



Chapter 5. Numerical Results 30

Figure 5.5: Normalized electric and magnetic fields Ez and Hz of mode 1 with
σ2 = 107 S/m via FEM.

as 1 m. The value of kρ was 2.4044 + j 4.5991 × 10−4 m−1, practically equal to
the value of xnp = x01 in Table 5-2 of [15].

Furthermore, from Fig. 5.7, it is noted that ae > η ah, therefore, this
mode is almost the TM z

01 mode.
Fig. 5.8 shows the longitudinal wavenumber of the second mode com-

puted via the point matching solution and via the perturbation solution.
Fig. 5.9 shows the fields Ez and Hz produced via the finite element

solution in the CST for mode 2. Note that the value of the longitudinal wave
number kz is in agreement with that found by the point matching algorithm
(kz = 20.820 − j 5.3112 × 10−5 m−1).

5.1.1.3
Circular Waveguide with σ2 = 107 S/m for the 3rd Propagating Mode

For mode 3, when running the program, the results were Ezmax =
0.085275 and Hzmax = 0.68234. Since there is a portion of the maximum electric
field, this is not the pure TEz mode. Therefore, this is almost the TEz

21 mode
(Ezmax < η Hzmax with η = 120π), as evidenced in the longitudinal magnetic
field in Fig. 5.10.

Another way to confirm this mode is through the value of kρ found, taking
into account that kρ = x′

np/a and the radius a of the circular guide was fixed
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Figure 5.6: Normalized electric field Ez of mode 2 with σ2 = 107 S/m.

Figure 5.7: Modal amplitudes of mode 2 for the case σ2 = 107 S/m.
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Figure 5.8: Longitudinal wavenumber of mode 2.

Figure 5.9: Normalized electric and magnetic fields Ez and Hz of mode 2 with
σ2 = 107 S/m via FEM.
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Figure 5.10: Normalized magnetic field Hz of mode 3 with σ2 = 107 S/m.

at 1. The value of kρ was 3.0540 + j 2.7953 × 10−4 m−1, practically equal to
the value of x′

np = x′
21 in Table 5-3 of [15].

Furthermore, from Fig. 5.11, it can be seen that ae < η ah, therefore,
this mode is almost the TEz

21 mode.
Fig. 5.12 shows the longitudinal wavenumber of the third mode computed

via the point matching solution and via the perturbation solution.
Fig. 5.13 shows the fields Ez and Hz produced via the finite element

solution in the CST for mode 3. It can be seen that the value of kz is
in agreement with that found through the point matching algorithm (kz =
20.735 − j 4.1172 × 10−5 m−1).

5.1.1.4
Circular Waveguide with σ2 = 104 S/m for the 1st Propagating Mode

For this example, we used an “imperfect” conductivity, meaning we chose
a conductivity value lower than that of the previous examples. The normalized
Hz field is shown in Fig. 5.14, and the modal amplitudes of the fundamental
mode are illustrated in Fig. 5.15, where we observe a quasi-TEz

11 field.
The found value of the radial wavenumber was kρ = 1.8331 + j 8.2938 ×

10−3 m−1. As we decrease the value of the surface conductivity of the
waveguide’s cross-section, the value of kρ deviates slightly from the theoretical
value compared to the value of kρ in Section 5.1.1.1 (the imaginary part of kρ

increases with the inverse of σ2).
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Figure 5.11: Modal amplitudes of mode 3 for the case σ2 = 107 S/m.

Figure 5.12: Longitudinal wavenumber of mode 3.
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Figure 5.13: Normalized electric and magnetic fields Ez and Hz of mode 3 with
σ2 = 107 S/m via FEM.

Figure 5.14: Normalized magnetic field Hz of mode 1 with σ2 = 104 S/m.
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Figure 5.15: Modal amplitudes of mode 1 for the case σ2 = 104 S/m.

5.1.1.5
Comparison of kz value between PMM and FEM for the case σ2 = 107 S/m

Table 5.1 shows the real and imaginary part of the longitudinal wavenum-
ber kz found using the point matching technique and the FEM of the
CST software for each of the modes presented previously. The relative error
regarding the real and imaginary part of kz based on the comparison of the
results obtained by the two methods are in Table 5.2. FEM solutions are used
as reference.

Table 5.1: Real and imaginary part of the longitudinal wavenumber kz of the
first three modes in a circular waveguide obtained by PMM and FEM.

Modo 1 Modo 2 Modo 3
ℜe(kz)P MM 20.877443 20.820078 20.734753
ℑm(kz)P MM 2.257676 × 10−5 5.311193 × 10−5 4.117159 × 10−5

ℜe(kz)F EM 20.8774 20.8201 20.7348
ℑm(kz)F EM 2.25783 × 10−5 5.31133 × 10−5 4.11683 × 10−5

5.1.1.6
Conclusion of Circular Waveguide Results

The analysis of the results obtained for the circular waveguide reveals
important observations about the propagation modes and their characteristics.
In all the studied modes, the maximum electric and magnetic fields behaved
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Table 5.2: Relative error of the real and imaginary part of the longitudinal
wavenumber kz of the first three modes in a circular waveguide with respect
to our method and the method used in CST.

Modo 1 Modo 2 Modo 3
Relative Error - ℜe(kz) (%) 0.0002060 0.0001057 0.0002267
Relative Error - ℑm(kz) (%) 0.006821 0.002579 0.007992

consistently with theoretical expectations, confirming the validity of the
method used here.

For the case of degenerate modes (different modes having the same cutoff
frequency), we proceed as follows: after locating a “multiple” eigenvalue and
the corresponding eigenvector, the characteristic equation is deflated to place
a pole at the position of the found eigenvalue. Next, a new search for local
minima is performed, and the eigenvalue is refined through a zero search. The
new eigenvalue will be almost identical to the previous one. Using this last
calculated eigenvalue, the singular value decomposition (SVD) technique is
applied to find the associated eigenvector. In this way, it is observed that the
last eigenvalue has associated fields that are orthogonal to those of the first one.
The reason why the eigenvalues are not exactly equal is due to the selection
of matching points, which are not perfectly symmetric along the contour.

The calculated values of kρ for each mode were close to the theoretical
reference values, demonstrating the accuracy of the employed modeling.
Additionally, the presence of hybrid components in the analyzed modes,
especially in the TEz

11, TM z
01 and TEz

21 modes, highlights the complexity of the
electromagnetic interactions in these waveguides, indicating that the modes are
not purely TE or TM but exhibit hybrid characteristics.

Finally, when comparing the results with reference solutions, such as
those obtained by perturbation method and numerical solution via FEM in
CST, a good agreement was observed, validating the use of the point matching
method for the analysis of circular waveguides.

5.1.2
Truncated Elliptical Waveguide with Imperfect Walls

We consider an elliptical waveguide with radius a = 1 m and b = 2
m truncated with an imperfect conductor with σ2 = 105 S/m, and N = 8
harmonics (with points equally spaced along the perimeter of the waveguide)
in order to observe the electromagnetic propagation. The frequency used was
1 GHz.
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Figure 5.16: Normalized electric field Ez of mode 1 with σ2 = 105 S/m.

5.1.2.1
Elliptical Waveguide with σ2 = 105 S/m for the 1st Propagating Mode

For the first mode, the maximum field amplitudes found in the algorithm
were: Ezmax = 0, 20876 and Hzmax = 0, 092186. Since there is a contribution
from the electric field and Ezmax < η Hzmax , this is not a pure TEz mode. Our
solution via point matching provides mode 1 with kz = 20, 889 − j 3, 048 ×
10−4 m−1 for operation at 1 GHz. The associated longitudinal fields are shown
in Figs. 5.16 and 5.17, where a quasi-TEz field is observed. Additionally, from
Fig. 5.18, we can see that ae < η ah.

In Fig. 5.19 we can observe the fields Ez and Hz produced via the finite
element solution in the CST of mode 1. It is possible to verify that the value of
kz (20, 8889 − j 3, 04841 × 10−4 m−1) is in agreement with that found through
the point matching algorithm.

5.1.2.2
Elliptical Waveguide with σ2 = 105 S/m for the 2nd Propagating Mode

For the second mode, the maximum field amplitudes found in the
algorithm were: Ezmax = 0, 59296 and Hzmax = 0, 34933. Since there is a
contribution from the electric field and Ezmax < η Hzmax , this is not a
pure TEz mode. Our solution via point matching provides mode 2 with
kz = 20, 884 − j 9, 507 × 10−5 m−1 for operation at 1 GHz. The associated
longitudinal fields are shown in Figs. 5.20 and 5.21, where a quasi-TEz field is
observed. Additionally, from Fig. 5.22, we can see that ae < η ah.
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Figure 5.17: Normalized magnetic field Hz of mode 1 with σ2 = 105 S/m.

Figure 5.18: Modal amplitudes of mode 1 for the case σ2 = 105 S/m.
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Figure 5.19: Normalized electric and magnetic fields Ez and Hz of mode 1 with
σ2 = 105 S/m via FEM.

Figure 5.20: Normalized electric field Ez of mode 2 with σ2 = 105 S/m.



Chapter 5. Numerical Results 41

Figure 5.21: Normalized magnetic field Hz of mode 2 with σ2 = 105 S/m.

Figure 5.22: Modal amplitudes of mode 2 for the case σ2 = 105 S/m.
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Figure 5.23: Normalized electric and magnetic fields Ez and Hz of mode 2 with
σ2 = 105 S/m via FEM.

In Fig. 5.23 we can observe the fields Ez and Hz produced via the finite
element solution in the CST of mode 2. It is possible to verify that the value of
kz (20, 8839 − j 9, 50677 × 10−5 m−1) is in agreement with that found through
the point matching algorithm.

5.1.2.3
Elliptical Waveguide with σ2 = 105 S/m for the 3rd Propagating Mode

For the third mode, the maximum field amplitudes found in the algorithm
were: Ezmax = 0, 84342 and Hzmax = 1, 1281 × 10−5. Since there is a
contribution from the magnetic field and Ezmax > η Hzmax , this is not a
pure TM z mode. Our solution via point matching provides mode 3 with
kz = 20, 874 − j 4, 829 × 10−4 m−1 for operation at 1 GHz. The associated
longitudinal fields are shown in Figs. 5.24 and 5.25, where a quasi-TM z field
is observed. Additionally, from Fig. 5.26, we can see that ae < η ah.

In Fig. 5.27 we can observe the fields Ez and Hz produced via the finite
element solution in the CST of mode 3. It is possible to verify that the value of
kz (20, 8737 − j 4, 82879 × 10−4 m−1) is in agreement with that found through
the point matching algorithm.
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Figure 5.24: Normalized electric field Ez of mode 3 with σ2 = 105 S/m.

Figure 5.25: Normalized magnetic field Hz of mode 3 with σ2 = 105 S/m.
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Figure 5.26: Modal amplitudes of mode 3 for the case σ2 = 105 S/m.

Figure 5.27: Normalized electric and magnetic fields Ez and Hz of mode 3 with
σ2 = 105 S/m via FEM.
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5.1.2.4
Comparison of kz value between PMM and FEM for the case σ2 = 105 S/m

Table 5.3 shows the real and imaginary part of the longitudinal wavenum-
ber kz found using the point matching method and the FEM of the CST
software for each of the previously presented modes of the elliptical waveguide
case. The relative error regarding the real and imaginary part of kz based on
the comparison of the results obtained by the two techniques are in Table 5.4.
FEM solutions are used as reference.

Table 5.3: Real and imaginary part of the longitudinal wavenumber kz of the
first three modes in a elliptical waveguide obtained by PMM and FEM.

Modo 1 Modo 2 Modo 3
ℜe(kz)P MM 20.888917 20.883864 20.873666
ℑm(kz)P MM 3.048391 × 10−4 9.506765 × 10−5 4.828986 × 10−4

ℜe(kz)F EM 20.8889 20.8839 20.8737
ℑm(kz)F EM 3.04845 × 10−4 9.50698 × 10−5 4.82879 × 10−4

Table 5.4: Relative error of the real and imaginary part of the longitudinal
wavenumber kz of the first three modes in a elliptical waveguide with respect
to our method and the method used in CST.

Modo 1 Modo 2 Modo 3
Relative Error - ℜe(kz) (%) 0.00008138 0.0001724 0.0001629
Relative Error - ℑm(kz) (%) 0.001935 0.002261 0.004059

5.1.2.5
Conclusion of Elliptical Waveguide Results

The application of the point matching method (PMM) to the examples
of elliptical waveguides demonstrated consistent results in obtaining the quasi-
TEz and quasi-TM z modes, as evidenced by the electric and magnetic field
distributions. The comparison with the finite element method (FEM) from the
CST software revealed good agreement in both the longitudinal fields Ez and
Hz and the values of the longitudinal wavenumber kz, with minor deviations
due to differences in the numerical approaches of each technique.

An important point to mention is that FEM is a numerical solution but
not a physical one. As a result, some of the fields generated in CST do not
exhibit symmetry, requiring the use of a symmetric plane for the simulation.
Additionally, some modes exhibit fields that appear spurious (irregular or
non-physical field patterns). This does not occur with the fields generated by
PMM, which represent more physical and symmetric fields. Therefore, PMM
has proven to be an efficient solution for modal analysis.
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Conclusions and Future Works

Isotropic or anisotropic guided cylindrical structures, such as coaxial
cables and waveguides, are widely used in microwave and millimeter-wave
systems, with their electromagnetic analysis obtained through numerical or
analytical models. An example is the point matching method, a semi-analytical
approach where the solution is obtained by imposing boundary conditions
at discrete points along the domain boundaries, using analytical expansions.
Another example is the finite element method, a fully numerical technique in
which the domain is divided into small finite elements, and shape functions
are used to interpolate the values of the variables within each element.

In this work, we present a brief theoretical review of cylindrical wave
functions in Chapter 2 to address physical and mathematical problems
involving cylindrical symmetry, such as the propagation of electromagnetic
waves in cylindrical structures.

Chapter 3 presents a theoretical analysis of waveguides with arbitrar-
ily shaped cross-sections and straight longitudinal axes truncated by an
impedance boundary condition. Through the impedance boundary condition
equation on a high-conductivity surface, we derive expressions for the modal
fields within the waveguide.

In Chapter 4, we introduce a mathematical model for analyzing hollow
waveguides with arbitrary cross-sections, employing an approach based on the
expansion of cylindrical harmonics and the point-matching method.

The numerical results for different cross-section geometries and conduc-
tivities are presented in Chapter 5. These results validate the proposed model,
which proves capable of handling different impedance boundary conditions,
offering a robust tool for waveguide analysis in various configurations. Its
advantage over brute-force approaches lies in its lower computational resource
requirements.

Comparing the results of the technique explored here with the perturba-
tion method and the finite element method (FEM) used in the CST software for
the frequency of 1 GHz, we observed good agreement with small deviations due
to the different numerical methods employed. It is worth highlighting that in
the CST there is a problem of convergence of the FEM (non-physical solution),
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with the emergence of spurious modes and thus compromising the accuracy of
the simulation in the CST.

These techniques also work for frequencies of 30 GHz and above. The
higher-order terms with k2 ρ become smaller as the frequency increases and
as the radius of curvature ρ of the contour bounding the waveguide increases.
Another point, further confirming that the solution is suitable for millimeter
waves, is that the expansion of the fields in Maxwell’s equations uses Bessel-
Fourier harmonics, which we know solve the truncation problem by PEC
(Z2 = 0) exactly. Since the impedance of medium 2 is such that Z2 =

√
µ0/ϵ2,

with ϵ2 = ϵ0ϵr2 − j σ2/ω , if the frequency increases, Z2 will be small.
Future research may explore applying this method to other complex

geometries. Additionally, we recommend studying the first-order Rytov bound-
ary condition, which is essential for analyzing modal fields in waveguides
with anisotropic properties. Finally, another aspect worth investigating is the
expansion of sources within waveguides truncated by higher-order impedance
boundary conditions to analyze wireless communication along realistic tunnels.
Based on Lorentz’s reciprocity theorem, it is possible to introduce an expansion
of the electromagnetic source in terms of cylindrical harmonics.
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A
First-Order Rytov Boundary Condition

In this case, we will consider the same waveguide represented in Fig. 3.1
and define the unit normal vector to the surface only in the radial direction, i.e.,
n̂ = ρ̂. For a cylindrical surface ρ = constant, the impedance of the surrounding
medium is anisotropic, that is, it is the local tensor with components in the
azimuthal and axial directions. The first-order Rytov impedance boundary
condition on the contour C is given by [19,20]

n̂× Ē = ¯̄η · n̂×
(
n̂× H̄

)
. (A-1)

Based on the equations [19]

Eα = −Z Hβ

{
1 − 1

2 j k0 N hγ

∂

∂γ

(
ln

(
hα

hβ

Z

))}
(A-2)

Eβ = Z Hα

{
1 − 1

2 j k0 N hγ

∂

∂γ

(
ln

(
hβ

hα

Z

))}
, (A-3)

it is sufficient to convert the constant impedance Z of contour C into its
anisotropic form. Thus, the fields will take the following form [19,21]:

Eϕ = −Z Hz

{
1 − 1

2 j k0 N hρ

∂

∂ρ

(
ln

(
hϕ

hz

Z

))}
(A-4)

Ez = Z Hϕ

{
1 − 1

2 j k0 N hρ

∂

∂ρ

(
ln

(
hz

hϕ

Z

))}
(A-5)

The effective surface impedance implicit in (A-4) and (A-5) is a tensor with
components

ηϕϕ = Z

{
1 − 1

2 j k0 N hρ

∂

∂ρ

(
ln

(
hz

hϕ

Z

))}
, (A-6)

ηzz = Z

{
1 − 1

2 j k0 N hρ

∂

∂ρ

(
ln

(
hϕ

hz

Z

))}
. (A-7)

Applying the metrics corresponding to the cylindrical coordinate system
(hϕ = ρ, hρ = hz = 1) and assuming that N =

√
ϵµ/ϵ0µ0 = k/k0, (k = k2),

which is the complex refractive index, we have that
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ηϕϕ = Z

{
1 − 1

2 j k2
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∂ρ

(
ln
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1
ρ
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))}
, (A-8)

= Z
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1 + 1

2 j k2 ρ

}
, (A-9)

ηzz = Z
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= Z
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2 j k2 ρ
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Eϕ = −ηzz Hz = −Z
{

1 − 1
2 j k2 ρ

}
Hz, (A-12)

Ez = ηϕϕ Hϕ = Z

{
1 + 1

2 j k2 ρ

}
. (A-13)
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